

Artificial Intelligence in Recruitment: Mitigating Bias Against Disabled Candidates through Inclusive Human Resource Management Strategies

Research Project
Presented by: Neha Rajendra Verma
Student ID: 290735
Supervisor: Jim Simpson
Date: September 2025

Acknowledgements

I would like to express my deepest gratitude to my supervisor, **Jim Simpson**, for his invaluable guidance and encouragement throughout this dissertation. His advice pushed me to think more widely about my research focus and explore perspectives that I would not have considered on my own. Despite being on leave and occupied with other commitments, he made time to provide constructive feedback, answer my questions, and support me at every stage. His assistance in helping me connect with the University's Disability Department was particularly important, especially during the prolonged ethical approval process, and his constant reassurance helped me stay motivated and confident.

I would also like to thank the staff within the School of Business, Management and Economics for the knowledge and resources provided throughout the MSc Human Resource Management programme, which laid the foundation for this project. I am sincerely grateful to all participants who took the time to contribute to my research and share their experiences.

Finally, I extend heartfelt thanks to my family and friends for their patience, encouragement, and unwavering support during this journey. Their belief in me has been a source of strength throughout my studies.

Table of Contents

Title

Acknowledgements

Abstract

➤ Introduction

- Research Rationale and Questions
- Theoretical and Contextual Framework
- Methodological Overview
- Overview of Findings
- Dissertation Structure
- Contribution and Significance

➤ Statement of the Problem / Research Question

➤ Artificial Intelligence in Recruitment: Accessibility and Disability Discrimination

- AI in Recruitment: Promise and Perils
- Algorithmic Bias Against People with Disabilities
- Accessibility Gaps in Data and Design
- Bias in Automated Interviews and Assessments
- Case Evidence: Discrimination in Practice
- Inclusive AI: Ethical and Practical Considerations
- Conclusion of Literature Review Section

➤ Research Context and Justification

➤ Research Methodology

- Research Design and Rationale
- Sampling and Recruitment
- Survey Structure
- Ethical Considerations
- Data Analysis
- Limitations

➤ Findings

- Participant Demographics
- Exposure to AI Recruitment Tools

- Perceived Fairness of AI Tools
- Accessibility and Usability of AI Systems
- Open-Text Qualitative Insights: Bias, Emotional Impact, and Suggestions

➤ Discussion

- Differential Experiences of Disabled vs. Non-Disabled Candidates
- Algorithmic Bias and Fairness in AI Hiring
- Transparency, Trust, and the Role of Human Oversight
- AI Recruitment in Current HR Practice

➤ Conclusion

- Relevance for Organisations (Strategic Perspective)
- Implications for HR Practice
- Shortcomings and Limitations

➤ Reference List (Harvard Style)

➤ Appendices

- Appendix A: Survey Questionnaire
- Appendix B: Statistical Outputs and Figures
- Appendix C: Thematic Coding of Open-Text Responses
- Appendix D: Ethical Approval and Participation Documents
- Appendix E: Supplementary Materials

Abstract

This dissertation investigates the use of artificial intelligence in recruitment, focusing on accessibility and potential disability discrimination. The aim is to examine how AI-driven hiring tools may inadvertently disadvantage candidates with disabilities, even as organisations seek efficiency gains. The study is situated in the context of inclusive HRM and current regulatory attention to fair hiring. Methodologically, it relies on a structured literature review of academic and industry sources, complemented by analysis of illustrative case studies.

The analysis finds that AI recruitment systems can embed biases harmful to disabled applicants. Automated video interviews using speech recognition may misinterpret the communication of candidates with hearing impairments or neurodivergent patterns, while algorithmic resume-screener often penalise employment gaps or atypical career paths associated with disability leave. One notable example is a 2025 ACLU complaint alleging that an AI video-interview tool unfairly penalised a deaf applicant's communication style. These cases illustrate how unmitigated AI tools can replicate and amplify exclusionary patterns.

The study highlights important implications for HR strategy and CIPD compliance. HR professionals should ensure that AI-enhanced recruitment processes adhere to disability and equality legislation and CIPD standards on diversity and inclusion. Recommended actions include auditing AI systems for bias, providing alternative assessment routes (e.g. non-video evaluations), and ensuring transparency from technology vendors. A key suggestion is that HR strategy incorporate ongoing oversight and candidate-centred processes to balance innovation with fairness. By proactively addressing algorithmic bias, organisations can uphold inclusive hiring practices and maintain compliance with professional and legal guidelines.

Introduction

Artificial Intelligence (AI) has become one of the most significant forces reshaping human resource management (HRM), particularly in recruitment and selection. Tools such as automated resume screeners, chatbot interviews, and video-interview analytics are now widely adopted by employers seeking efficiency and consistency. These technologies are often promoted as objective alternatives to human decision-making, capable of processing large volumes of applications with speed and uniformity (Zhuang and Goggin, 2024). Yet, scholars and regulators increasingly caution that AI systems are not neutral. Instead, they tend to replicate the biases embedded in the data on which they are trained or the criteria designed by their developers (Whittaker et al., 2019).

This tension between promise and peril is especially pronounced for disabled and neurodivergent applicants. Research on algorithmic fairness has largely focused on race and gender, while disability remains under-examined (Fisher, Bonaccio and Connelly, 2024). This is concerning given the persistent disability employment gap: in the UK, just over half of working-age disabled people (53.2%) were employed in 2019, compared to 81.8% of non-disabled people (ONS, 2019). AI recruitment tools that penalise non-linear career paths, atypical communication styles, or the use of assistive technologies risk entrenching this exclusion rather than alleviating it. In short, while AI has the potential to widen access to jobs, it can also “disable by design” if not built and deployed inclusively.

The urgency of this issue is heightened by current policy and industry debates. In the US, the Department of Justice and the Equal Employment Opportunity Commission (EEOC) have warned that employers’ use of AI could lead to unlawful discrimination if accessibility is ignored (DOJ/EEOC, 2022). Similarly, the White House’s AI Bill of Rights (2022) sets out principles of fairness, transparency, and accountability. In Europe, the forthcoming EU AI Act classifies recruitment systems as “high-risk” technologies, requiring stringent safeguards. In the UK, the Equality Act 2010 already imposes legal duties on employers to provide reasonable adjustments and prevent discriminatory hiring. Professional bodies such as the CIPD (2025) have echoed these imperatives, urging HR leaders to embed fairness, accessibility, and accountability into AI governance. Against this backdrop, the present research is both timely and socially significant.

Research Rationale and Questions

This dissertation seeks to address the overlooked intersection of AI hiring and disability inclusion. It responds to a critical gap in scholarship and practice: while the risks of algorithmic bias for women and ethnic minorities are well-documented, the specific barriers faced by disabled applicants remain poorly understood (Nugent and Scott-Parker, 2022). By foregrounding disability and neurodiversity, this project contributes to the broader debates on ethical AI, inclusive HRM, and equality law.

The study is guided by two research questions:

1. How do disabled and non-disabled job applicants differ in their experiences of AI-driven recruitment processes, particularly with respect to perceived fairness, accessibility barriers, and emotional impact?
2. What strategies can organisations adopt to ensure AI hiring tools advance inclusive HRM practices and disability rights compliance, rather than entrench existing inequalities?

These questions not only direct the empirical investigation but also highlight the dual aim of the project: to capture lived experiences and to generate actionable recommendations for practice.

Theoretical and Contextual Framework

The analysis is anchored in two complementary frameworks: Inclusive Human Resource Management (HRM) and Disability Studies. Inclusive HRM emphasises fairness, equity, and the proactive removal of barriers in recruitment and career development (CIPD, 2023). Disability Studies, particularly through the social model of disability, shifts attention away from individual impairments towards structural obstacles: people are “disabled” by environments and systems that fail to accommodate human diversity (Oliver, 1990). Applying these perspectives together reveals that the problem lies not only in biased algorithms but also in the underlying assumptions embedded in AI hiring tools such as equating eye contact with competence or penalising career breaks linked to health conditions.

This approach situates the research within pressing debates about fairness, accountability, and design. It acknowledges the criticisms that many AI recruitment systems, such as video interview platforms, rely on “pseudoscientific” markers that privilege neurotypical behaviours (Harwell, 2021). It also aligns with regulatory concerns in the UK, where the Equality and Human Rights Commission and the Information Commissioner’s Office have called for robust oversight of recruitment technologies. By examining the lived experiences of disabled and non-disabled applicants, this study contributes new insights into how these debates translate into practice.

Methodological Overview

The research employs a mixed-methods survey, administered online via the University of Sussex Qualtrics platform. This method was chosen to balance breadth with depth: it allowed for quantitative comparisons between groups while also capturing qualitative narratives of individual experiences. The survey was conducted between August and September 2025 and yielded 67 valid responses, evenly split between disabled/neurodivergent and non-disabled participants.

The questionnaire covered demographics, experiences with AI tools (résumé screeners, chatbots, video interviews), perceptions of fairness and accessibility, and emotional impacts such as stress or confidence. Likert-scale questions enabled statistical analysis, while open-ended prompts invited respondents to share stories and suggestions. Data were analysed using descriptive statistics and comparative tests, alongside thematic coding of qualitative responses.

This approach provided a nuanced understanding of how AI recruitment tools are experienced differently by disabled and non-disabled applicants, while also surfacing practical recommendations for inclusive design.

Overview of Findings

The findings reveal significant differences between disabled and non-disabled respondents. Disabled participants frequently reported barriers that their peers did not for example, automated résumé filters penalising employment gaps, or video interview systems misinterpreting atypical eye contact or speech patterns. Non-disabled respondents were more likely to perceive AI tools as fair or neutral, and in some cases even as an improvement over human bias. However, trust in AI fairness was markedly lower among disabled candidates, many of whom described the systems as opaque and stressful.

Accessibility was another major fault line. While some respondents appreciated the convenience of remote assessments, many disabled participants encountered incompatibility with assistive technologies, inflexible timed tests, or poorly designed interfaces. Emotional impacts were also striking: disabled and neurodivergent applicants often reported feeling anxious, invisible, or disadvantaged by “black box” decisions, whereas non-disabled participants largely accepted AI as routine.

Despite these challenges, respondents identified potential benefits if AI were redesigned with inclusion in mind. Positive experiences included faster feedback, remote access, and instances where AI reduced human bias. Crucially, however, such benefits were unevenly distributed, highlighting the need for intentional safeguards.

Dissertation Structure

The dissertation proceeds as follows:

- **Chapter 1 (Literature Review):** Surveys existing research on AI in recruitment, highlighting both its promises and its pitfalls, with particular attention to disability-related discrimination.
- **Chapter 2 (Research Methodology):** Outlines the design of the empirical study, including sampling strategy, survey structure, ethical considerations, and methods of analysis.
- **Chapter 3 (Findings):** Presents the quantitative and qualitative results, comparing disabled and non-disabled participants’ perceptions of fairness, accessibility, and emotional impact.
- **Chapter 4 (Discussion):** Interprets the findings in light of Inclusive HRM and Disability Studies, situating them within wider academic and policy debates, and critically analysing the implications for AI fairness.
- **Chapter 5 (Conclusion):** Reflects on the broader significance of the study, summarising contributions to scholarship, practice, and policy. It includes a subsection

on **Implications for HR practice**, a CIPD-required section on **Relevance for Organisations from a Strategic Perspective**, and a frank appraisal of the study's **Shortcomings and Limitations**, with directions for future research.

Contribution and Significance

The core contribution of this dissertation is to foreground disability in the algorithmic fairness debate. By systematically comparing disabled and non-disabled applicants' experiences, it demonstrates that AI hiring tools are not universally experienced as efficient or fair; rather, they create uneven outcomes shaped by assumptions about ability. This work not only fills a gap in academic research but also speaks directly to organisational practice and policy. It provides evidence-based recommendations for HR professionals, aligns with emerging regulatory frameworks, and contributes to ongoing conversations about how technology can be harnessed responsibly in the workplace.

In sum, this dissertation argues that AI recruitment systems are at a crossroads. Left unchecked, they risk entrenching structural inequalities. But with inclusive design, rigorous oversight, and meaningful engagement with disabled communities, they can be transformed into tools for opportunity. The chapters that follow set out to demonstrate both the challenges and the possibilities, with the ultimate aim of informing fairer, more accessible recruitment in the age of AI.

Statement of the Problem / Research Question

Artificial Intelligence (AI) has become increasingly embedded in recruitment, with CV screeners, chatbots, and video-interview algorithms now commonplace across industries. Employers and vendors often promote these technologies as efficient and impartial, capable of processing vast applicant pools and reducing human bias. However, mounting research suggests that their design and deployment can unintentionally reproduce structural inequalities rather than remove them (Whittaker et al., 2019; Tilmes, 2022). This issue is particularly acute for disabled and neurodivergent applicants, who already face systemic disadvantages in employment. In the UK, the disability employment gap remains above 28 percentage points, with only 53.2% of working-age disabled people employed compared to 81.8% of their non-disabled counterparts (ONS, 2019). When AI-driven recruitment systems embed ableist assumptions such as penalising résumé gaps, atypical communication styles, or reliance on assistive technology they risk further widening this gap.

Despite the rapid expansion of AI in HRM, current scholarship has disproportionately focused on race and gender as categories of bias, leaving disability relatively underexplored (Nugent and Scott-Parker, 2022). This omission reflects a broader marginalisation of disability in workplace research and fairness debates. While some studies acknowledge that AI may pose risks for disabled applicants, few directly compare how disabled and non-disabled candidates experience recruitment technologies differently. This lack of comparative analysis limits both theoretical understanding and practical solutions. Without recognising how impacts vary across groups, organisations risk implementing generic “bias mitigation” strategies that fail to address the unique accessibility and fairness concerns of disabled candidates.

Findings from this study demonstrate that while AI can create stress and barriers for many applicants, disabled participants consistently reported more severe disadvantages compared to non-disabled peers. These included greater perceptions of unfair treatment, more frequent accessibility obstacles, and higher levels of anxiety and mistrust of the technology. Such disparities underscore the need for disability to be treated not as a peripheral consideration but as a central dimension of algorithmic fairness and inclusive HRM. Moreover, the assumption that “human oversight” provides adequate safeguards has been criticised. Scholars argue that once an AI system encodes exclusionary criteria, post-hoc oversight does little to mitigate structural bias; meaningful change requires inclusive design, transparency, and accountability from the outset (Nugent and Scott-Parker, 2022).

Against this background, the present study is guided by two interrelated research questions:

- 1. How do disabled and non-disabled job applicants differ in their experiences of AI-driven recruitment processes, particularly in terms of fairness, accessibility, and emotional impact?**
- 2. What strategic measures can organisations adopt to ensure AI recruitment tools align with inclusive HRM principles and disability rights legislation, rather than reinforcing existing inequalities?**

The originality of this project lies in its explicit comparative approach. By systematically examining the experiences of both disabled and non-disabled candidates, it sheds light on overlooked disparities and fills a critical gap in scholarship. This dual focus enables a more

nuanced understanding of how AI recruitment tools function in practice, while also generating practical recommendations for inclusive HR design and policy.

In doing so, the study contributes to two key debates. First, it extends the literature on algorithmic fairness by bringing disability to the forefront of analysis, moving beyond the narrow focus on race and gender. Second, it engages directly with HRM practice, answering the CIPD's call for evidence-based strategies that ensure technology supports, rather than undermines, workplace inclusion.

Artificial Intelligence in Recruitment: Accessibility and Disability Discrimination

Artificial intelligence (AI) is increasingly reshaping recruitment and selection. Tasks like résumé screening, chatbot interviews, and predictive ranking are often handled by machine-learning systems touted as efficient and unbiased alternatives to humans. However, scholars caution that algorithmic screening is “only as unbiased as the data and human decisions behind it” (Whittaker et al., 2019). In fact, regulatory guidance in 2022 explicitly warned that AI tools “may result in unlawful discrimination against people with disabilities” (Department of Justice and EEOC, 2022). In the US, the Department of Justice and the EEOC urge employers to ensure AI does not become “new ways to discriminate” (Department of Justice and EEOC, 2022). From a policy standpoint, disability rights laws (e.g. the ADA in the US, the Equality Act in the UK) already require reasonable accommodations and forbid discriminatory hiring practices.

Beyond legality, there is a strong moral and business case for inclusive hiring. Disability scholars emphasize the social model of disability, which frames barriers as societal rather than individual failings, and argue that “making environments (in this case, hiring algorithms and practices) fit the person” is an ethical imperative (Oliver, 1990). Moreover, global data reveal massive employment gaps: for example, only about half of working-age disabled people in the UK are employed, versus roughly 80% of non-disabled counterparts (UK Parliament Library, 2021). This underrepresentation is not only unjust but costly: inclusive HR research shows that diverse teams make better decisions and are more innovative (Talikowska et al., 2023). One recent report notes that persons with disabilities (and their networks) control about \$13 trillion in global spending power (Talikowska et al., 2023), and companies that lead in disability inclusion see higher productivity and profits. For instance, Microsoft’s neuroinclusion initiative cites studies finding teams with neurodivergent members are up to 30% more productive (The Valuable 500 / Microsoft, 2024). Thus, beyond compliance, treating disability inclusion as a strategic priority can yield competitive advantage.

This review synthesizes scholarly and policy literature on AI-driven hiring with a focus on disabled and neurodivergent applicants. It first surveys how AI is used in recruitment and the promises claimed. It then critically examines evidence of algorithmic bias and accessibility barriers affecting disabled candidates. Throughout, we draw on inclusive HRM and disability studies perspectives: for example, the disability social model (Oliver, 1990) and the principle of “nothing about us without us” in inclusive design. Finally, we review recommendations from experts on ethical AI and inclusive HR from technical fixes to organizational practices to ensure AI tools support, rather than undermine, equity in hiring. All claims are supported by recent studies and reports, reflecting the current state of the field.

AI in Recruitment: Promise and Perils

AI technologies now perform many functions in hiring. Common applications include automated Applicant Tracking Systems (ATS) that filter résumés by keywords or predicted job-fit; chatbots conducting preliminary screens; and analytics that score candidates on

attributes learned from past hires. More advanced tools analyze video interviews with computer vision and voice analysis: for example, systems may assess a candidate's eye contact, facial expressions, tone of voice, and language content to generate an "employability" score (Whittaker et al., 2019). Some vendors even offer gamified cognitive tests where an applicant's click speed or decision patterns are evaluated by AI. These tools can process large applicant pools far faster than humans and, in principle, introduce consistency.

Proponents argue that AI can reduce human biases by applying uniform criteria. For example, a machine learning model might be trained to identify the résumé characteristics of high-performing employees, potentially surfacing non-traditional candidates that past recruiters missed. AI can also enable new accessibility features: some platforms now auto-caption video interviews or allow candidates to submit alternative presentation formats (e.g. a video introduction or project portfolio) instead of a standard résumé. In these ways, AI could broaden outreach (especially online) and cater to different communication styles.

However, the purported objectivity of AI has been heavily critiqued. In practice, algorithms reflect the biases in their training data. If an employer's historical hiring had subtle ableism (e.g. excluding people with career gaps for health reasons), an AI trained on those patterns will replicate the same exclusions at scale. Whittaker et al. (2019) note that HireVue's interview AI, which scores body language and speech, is based on patterns from existing employees (often a homogeneous group). As one expert explains, AI "judges' people by who it thinks they're similar to even when it may never have seen anybody similar" (Whittaker et al., 2019). Meredith Whittaker of AI Now calls such video AIs "pseudoscience" (Whittaker et al., 2019), warning they perpetuate biases rather than eliminating them.

In short, AI in hiring is not inherently neutral. The US Department of Justice and the EEOC guidance stresses that employers must consider how AI tools impact different disabilities (Department of Justice and EEOC, 2022). For example, automated résumé screeners often penalize gaps in employment a proxy that has historically filtered out many disabled candidates. The guidance warns that requiring perfect scores (e.g. "90% fit") without considering disability explanations is discriminatory (Department of Justice and EEOC, 2022). Without careful design, AI can automate ableist assumptions and create new barriers for job seekers with disabilities.

Algorithmic Bias Against People with Disabilities

AI bias has been widely discussed in terms of race and gender, but only recently have scholars focused on disability-specific bias. Several factors make this bias especially insidious. First, disability status is often invisible in data. Unlike gender or race, which might be inferred or recorded, a résumé rarely discloses a person's disability. Many applicants (wise to stigma) choose not to reveal impairments. Thus, an AI has no explicit "disability" category to equalize, and disabled candidates form an unlabelled minority. Worse, proxy features may be inadvertently learned. For example, non-linear career paths and assistive technology keywords may co-occur with disability. If the algorithm has learned (from biased history) that such patterns correlate with poor performance, it may down-rank or reject qualified applicants with

those patterns. In a recent analysis of three commercial hiring AIs, Buyl et al. (2022) found that while models often addressed bias for traits like gender or race, “disability was not mentioned in the examples nor in the validation tests” (Buyl et al., 2022). In other words, mainstream fairness efforts tend to omit disability entirely, leaving a blind spot.

Accessibility Gaps in Data and Design

Because disability is unrecorded, datasets rarely capture it, so there is no fairness metric to enforce. Developers must deliberately collect data representing diverse disability profiles (e.g. deaf, autistic, dyslexic individuals) so the AI can learn from them. Otherwise, an AI may only “know” neurotypical norms and treat any deviation as a negative signal. For instance, many psychometric game tests rely on fast reaction times; candidates with motor disabilities or dyslexia (who take longer to read questions) could be unfairly filtered out. Similarly, screeners that parse written responses may undervalue the more tentative language or atypical communication of some disabled applicants. Unless these differences are anticipated and accommodated in design, the system will simply rank disabled applicants lower.

Another subtle bias is in feature extraction. Imagine an AI that flags résumés for use of terms like “special needs” or lists of assistive skills. Without context, it might treat them as irrelevant or disadvantageous. Or consider “employment gaps”: many disabled people have gaps for medical reasons. An algorithm that learned to penalize gaps from biased historical data would disproportionately reject such candidates. The U.S. EEOC has explicitly warned that treating gaps as negative can violate disability rights. Such examples illustrate how ableist patterns in old data become “baked in” to new AI filters if not checked.

Bias in Automated Interviews and Assessments

The dangers are especially acute in AI-driven interviews. Many video-interview platforms (notably HireVue) analyze a candidate’s expressions, gaze, and speech. This by design favors a narrow behavioural norm: direct eye contact, steady speech rate, and clearly enunciated words. But these traits are not universal: a blind candidate cannot make eye contact; an autistic person may avoid it or have atypical expressions; a deaf person using sign language has a different cadence and rhythm when speaking. Early versions of HireVue’s AI notoriously scored such differences as negative indicators of engagement or intelligence (Whittaker et al., 2019). Under public pressure, HireVue in 2021 scrapped its facial-affect analysis module, acknowledging that it could amplify bias. Nevertheless, many systems still implicitly rely on “neurotypical” cues.

AI-based games and tests pose parallel risks. Companies now use quick coding puzzles, logic games, or virtual tasks where performance is timed and even body language (via webcam) is monitored. These can grossly disadvantage candidates with certain disabilities: for example, someone with dyslexia or ADHD may struggle with timed text, and a candidate with a motor impairment may have slower reaction times. If the AI model is not explicitly designed to allow accommodations (such as extra time or alternative input methods), it will simply score these candidates lower. In other words, AI can unintentionally replicate existing barriers in digital form.

Some biases emerge from misguided metrics, not ill intent. For instance, an AI trained to predict future job performance might use past sales or supervisor ratings as “ground truth.” If an organization historically excluded disabled people from high-paying roles, the model will learn that certain applicant profiles (including disability-related ones) correlate with lower performance, even if that correlation is socially constructed. Standard fairness fixes also stumble here. For example, one study notes that unlike race or gender, disability is highly heterogeneous and context-dependent. Enforcing equal selection rates becomes tricky: who is the “disabled” group? Disabilities vary widely in type and severity, and many are hidden. A one-size-fits-all statistical fix can “flatten variance” and end up treating all disabled candidates as if they had the same needs or disabilities. In short, algorithmic fairness techniques must be paired with deeper insight: AI designers need to question which assessment criteria are truly job-relevant, rather than blindly optimizing for historic metrics.

Case Evidence: Discrimination in Practice

Real-world cases now confirm these theoretical concerns. In one widely reported 2024 incident, D.K., a Deaf Indigenous woman, applied for a promotion at Intuit (maker of TurboTax) and was required to complete a HireVue AI video interview. HireVue’s system uses automated speech recognition to transcribe answers. D.K. (who speaks English with a Deaf accent and uses ASL) found that the AI consistently mis-transcribed her responses a known limitation of such ASR systems for deaf and non-native speakers. Although she requested a reasonable accommodation, none was provided. Consequently, her automated scores on “communication” metrics were artificially low, and she was not advanced. Intuit’s feedback even told her to “adapt [her] communication style,” ironically blaming her for difficulties caused by the algorithm.

In March 2025, the ACLU filed a discrimination complaint on D.K.’s behalf, charging that Intuit and HireVue violated disability rights laws (including the ADA) by using this biased AI without accommodations (ACLU, 2025). The complaint explicitly notes that such technology “works worse for deaf and non-white applicants” (ACLU, 2025). It argues that employers have a legal duty to vet AI assessments for accessibility. As one attorney put it, companies cannot “hide behind artificial intelligence to avoid responsibility for discrimination” (ACLU, 2025).

This case highlights how AI tools, if not properly adapted, can create new barriers: requiring a spoken answer and scoring it via a flawed accent model effectively excluded a qualified Deaf candidate. It underscores the legal and ethical imperative to provide alternatives. Under laws like the ADA (US) and the Equality Act (UK), employers must ensure hiring processes are accessible and provide reasonable adjustments. If an AI step acts as a brick wall (e.g. a strict timer or voice analysis), an employer must offer another pathway (such as a human-conducted interview) or risk liability.

Inclusive AI: Ethical and Practical Considerations

Given these challenges, what can organizations do? Recent literature and policy guidelines converge on several key principles. Together, they suggest that truly inclusive AI hiring

requires both technical measures and a shift in mindset. The following considerations summarize current expert recommendations:

1. **Moving Beyond “Bias Formalism” to a Disability Justice Paradigm.** Many AI ethics approaches are built around narrow statistical fairness criteria (sometimes called “bias formalism”), such as equal hire rates across groups. While these can identify glaring disparities, disability advocates argue they are insufficient alone. Disabilities are highly varied and intersectional: what’s fair for one subgroup may not be for another. Instead, scholars propose a disability justice approach that centers the lived experiences and rights of disabled people. This means asking fundamental questions: Should eye contact even be an evaluation criterion? Does penalizing résumé gaps reflect ableist assumptions? In a disability justice paradigm, outcomes deemed “fair” are defined by disabled communities themselves, not just by mathematical parity. Practically, this means involving disabled people in defining fairness. For example, convening review panels of disabled professionals to inspect AI tools, or creating feedback channels for applicants to flag issues. It also means recognizing intersectionality: a disabled candidate of colour or of a marginalized gender may face compounded bias (Nugent & Scott-Parker, 2022). In short, rather than only tweaking metrics, a justice-oriented lens urges organizations to question whose values and norms are embedded in the AI, and to uphold the needs and rights of disabled applicants as primary.
2. **Ensuring Representation and Participation (“Nothing About Us Without Us”).** Inclusive design requires including people with disabilities at every stage. This goes beyond usability testing: disabled stakeholders should help shape algorithms themselves. For instance, AI developers should consult accessibility experts and recruit disabled individuals into user trials. If an AI is trained on video interviews, the training dataset should include candidates who are deaf, autistic, use sign language, etc., so the model learns to expect diverse behaviours. As one expert notes, “the range of characteristics of disability is very, very broad,” meaning assumptions about “normal” behaviour rarely hold (Whittaker et al., 2019). Incorporating disabled voices can catch subtle biases (for example, a dyslexic tester noting that phrasing of a question is confusing) and ensures accommodations (like alternative formats) are built in. Overall, ethical AI development in HR means co-design: people with disabilities help define requirements, give feedback, and validate the system. This participatory approach aligns with the mantra “nothing about us without us” and helps surface fairness issues early.
3. **Transparency and Candidate Rights.** Ethically and legally, applicants should know when AI is in play and have agency. The US “AI Bill of Rights” (2022) advocates clear notice and explanation for automated decisions (White House OSTP, 2022). In practice, recruiters should inform candidates if an algorithmic tool will be used and what traits it measures (e.g. “This software scores applicants on communication clarity and problem-solving.”). Disabled candidates, in particular, need this transparency to make informed choices. For example, if someone sees that a video interview will analyze speech tone,

they can proactively request accommodations or an alternative assessment. Similarly, if a candidate is rejected, they should be able to ask whether AI was involved and how their disability may have affected it. Providing meaningful explanations is key: an employer might say, “Our AI ranks communication on [these metrics]. If you have a condition affecting speech, please let us know so we can adjust or provide an alternate.” This level of openness serves a dual purpose: it helps applicants (especially disabled ones) understand and navigate the process, and it keeps employers accountable for their tools. Indeed, some jurisdictions are moving toward formal transparency requirements. The proposed EU AI Act classifies hiring AI as “high-risk,” likely mandating disclosure and documentation. Even in the US, the EEOC suggests that failure to explain AI decisions could be seen as negligence if discrimination is later claimed. In summary, respecting candidate rights means giving them notice, explanation, and the option to opt for a human-led alternative if needed.

4. **Continuous Monitoring and Auditing for Bias.** Deploying an AI tool is not a “set and forget” solution. Employers must regularly check outcomes for unintended bias. This is tricky because, as noted, disability status is often unknown. However, one strategy is proxy analysis: systematically examining whether certain test features disadvantage a subset of candidates. For example, HR could monitor if a particular section of a video interview consistently eliminates applicants who report needing extra time, or if resume keywords related to accommodations coincide with lower scores. If such patterns emerge, that signals a problematic bias. Researchers also advocate counterfactual testing: intentionally altering aspects of a candidate profile to mimic a disability and observing the AI’s response. For instance, one could take a successful applicant’s data, insert a hypothetical employment gap or change answer phrasing to reflect dyslexia, and see if the AI score drops significantly. A significant change would reveal a bias that needs fixing. From a governance perspective, third-party audits or certifications can help: independent evaluators can run such tests and review the algorithm for fairness. Some analysts also suggest that AI fairness audits should include disability-specific criteria (e.g. “disability impact assessments”) and check for accessible design. In short, employers should set up an ongoing audit process: use self-report data (where possible), simulate disability scenarios, and be ready to retrain or adjust models when biases are detected. The core idea is humility and vigilance assume even well-intentioned tools might slip up, and continuously test for hidden biases.
5. **Accommodations and Alternative Pathways.** Even with the best AI, some applicants may not be well served by automated tools. Ethically, the hiring process must offer a fallback. This means creating dual pathways: if a candidate discloses a disability or otherwise struggles with the standard AI assessment, they should have the option to engage in an alternate evaluation. For example, a company might normally use a timed coding game to screen developers, but an applicant with severe anxiety or a motor impairment could instead submit a coding project they’ve already done. Or if a video interview is inaccessible, the candidate could opt for a live interview or a phone call. In practice, this requires training HR to recognize when accommodations are needed and

configuring systems to allow switching. It may add complexity, but it is analogous to providing a wheelchair ramp alongside stairs: both routes lead to the job interview. Importantly, regulations increasingly expect this. The EEOC's guidance explicitly notes that failure to provide an alternative assessment when an AI tool is inaccessible can violate the ADA (Department of Justice and EEOC, 2022). In short, inclusive AI isn't an all-or-nothing: the "digital ramp" approach ensures no qualified applicant hits a brick wall. Companies should establish clear policies (and document them) so that at any point an applicant can request and receive a reasonable alternative evaluation.

6. **Organizational Culture and Training.** Finally, technology is only as fair as the people using it. HR professionals and managers must be educated about these issues. Many recruiters may not intend to treat disabled people unfairly but simply may not understand how bias occurs (Nugent & Scott-Parker, 2022). Training can raise awareness: for example, recruiters should learn that a brilliant autistic candidate might not maintain eye contact in an AI interview, but that does not imply lack of competence. Companies should foster collaboration between HR and technical teams so that hiring staff can identify odd AI outcomes and data scientists can explain model behaviour. Leadership commitment is crucial. Experts recommend that senior managers set explicit disability inclusion goals as part of AI strategy for instance, targets to increase the number of applicants with disabilities and track outcomes. They should require any new AI tool to be reviewed by an accessibility officer or inclusion specialist. Inclusive HRM means integrating tech deployment with the company's values: if diversity and equity are declared priorities, then every new system must pass that litmus test. In sum, the human element empathy, training, and culture must guide the technology, not the other way around.

Conclusion of Literature Review Section

AI is rapidly becoming a gatekeeper in modern recruitment, with profound implications for equity. This review has shown that without deliberate safeguards, AI hiring tools can perpetuate and even amplify discrimination against disabled and neurodivergent job seekers. We have seen examples at every stage: resume-screening algorithms penalizing applicants with health-related career breaks; video-interview AIs misunderstanding the communication styles of autistic or Deaf candidates; and automated tests that offer no accommodation for neurodiversity. These algorithmic outcomes not only harm qualified individuals by shutting them out of opportunities, but they undermine organizational goals of diversity and inclusion. From an inclusive HRM and disability studies perspective, these issues underscore that technology is never truly neutral it mirrors the assumptions of its creators and the biases of past data. If those underlying assumptions include ableism, the AI will unwittingly replicate it in every hiring decision.

Yet, the literature also makes clear that these challenges are surmountable. With intentional design and oversight, AI can become a force for inclusion. Platforms like Mentra are already showing how AI can be harnessed to empower neurodivergent candidates by matching them to jobs based on skills, not conformity. Policy frameworks (such as the ACLU guidelines and

PEAT's Inclusive Hiring standards) offer roadmaps for disability-aware AI use. Scholars and practitioners advocate the same imperatives: involve disabled people in the technology's design, maintain transparency, audit algorithms continuously, and always ensure accommodations. In essence, the deployment of AI in hiring must be accompanied by a robust ethos of inclusion. The research and case examples converge on one message: if we teach hiring algorithms to accommodate human diversity rather than penalize it the result can be more equitable hiring for all.

For academics and practitioners alike, it remains crucial to keep scrutinizing these systems not only for technical accuracy but for social impact. The unique needs of disabled people expose gaps that other fairness work might overlook, making disability a litmus test for truly just AI. Importantly, evidence suggests that making AI fairer for disabled applicants often improves fairness overall: attention to disability inclusion tends to benefit other underrepresented groups too (Talikowska et al., 2023). In the coming years, through inclusive design, rigorous audit, and enlightened HR policies, there is hope that AI can transform hiring from a source of bias into a gateway for talent of all kinds.

Research Context and Justification

Artificial Intelligence (AI) is rapidly transforming recruitment, with applications ranging from resume screening and chatbots to video interview analytics and gamified assessments (Zhuang and Goggin, 2024). These technologies are often promoted as efficient and objective, yet evidence increasingly shows that they risk reproducing systemic inequalities particularly for disabled and neurodivergent job seekers (Whittaker et al., 2019). This issue is especially pressing in the UK labour market. As of 2019, only 53.2% of disabled people aged 16–64 was in employment compared with 81.8% of non-disabled people, a gap of over 28 percentage points (ONS, 2019). If AI systems replicate ableist assumptions embedded in traditional recruitment practices, they risk entrenching this gap further by excluding candidates who are already disadvantaged (Tilmes, 2022).

The UK context is particularly significant given its legal and policy framework. Under the Equality Act 2010, employers are legally obliged to provide reasonable adjustments and ensure recruitment processes are accessible. However, AI tools often conflict with these obligations. For example, automated résumé screeners may penalise career breaks caused by health conditions, while video interview platforms that assess facial expressions or vocal tone may disadvantage autistic applicants or those with speech impairments (Harwell, 2021; ACLU, 2025). Such practices may constitute unlawful discrimination if they prevent qualified candidates from competing on equal terms (EEOC, 2022).

This study is grounded in two complementary frameworks: Inclusive Human Resource Management (HRM) and disability studies. Inclusive HRM emphasises equitable access, fairness, and proactive removal of barriers in recruitment processes (Fisher, Bonaccio and Connelly, 2024). Disability studies, meanwhile, offer a critical lens on how societal norms and technologies “disable” individuals by failing to accommodate human diversity (Oliver, 1990). Taken together, these perspectives shift the focus from narrow technical “bias correction” toward structural questions: are the criteria embedded in AI systems such as eye contact, speech fluency, or uninterrupted employment histories valid measures of employability, or do they reinforce exclusion (Tilmes, 2022)?

A recurring challenge is that AI hiring tools often train on historical data shaped by exclusionary practices. Algorithms may interpret non-linear career paths, atypical communication styles, or the use of assistive technologies as negative indicators, disadvantaging candidates with disabilities or chronic health conditions (Buyl et al., 2022). Many systems are not tested for disability fairness, and developers frequently lack awareness of how algorithmic discrimination against disabled people can occur (Nugent and Scott-Parker, 2022). As a result, the voices of disabled job seekers remain marginalised in the design and evaluation of recruitment AI, meaning that technologies intended to improve efficiency may inadvertently reproduce long-standing structural barriers (Whittaker et al., 2019).

Although scholarship has widely explored racial and gender bias in AI, disability remains comparatively underexamined. This research addresses that gap by explicitly comparing the experiences of disabled and non-disabled applicants. It evaluates how AI recruitment tools

shape perceptions of fairness, accessibility, and inclusion within the UK context and considers whether current practices align with legal obligations under the Equality Act 2010. In doing so, it not only highlights barriers but also considers how AI could be reshaped to support, rather than undermine, inclusive HRM principles.

In sum, this study is timely, socially significant, and theoretically grounded. By centring disability and neurodiversity within the algorithmic fairness debate, it responds to the lived realities of job seekers navigating an increasingly automated labour market. At the same time, it contributes to wider debates on ethical AI by demonstrating how inclusive design and HR practice can transform recruitment systems from tools of exclusion into enablers of equity.

Research Methodology

Research Design and Rationale

This study employed a **self-administered online questionnaire** hosted on the University of Sussex Qualtrics platform as the sole method of data collection. The design was guided by the research questions, which explore how disabled and non-disabled applicants experience AI-driven recruitment, and what measures organisations can adopt to promote inclusivity. Surveys are widely used in HRM research for capturing diverse applicant perceptions, as they allow both quantitative measurement and qualitative elaboration across larger samples (Fisher, Bonaccio and Connelly, 2024).

Compared to interviews or focus groups, the anonymous format was particularly suited to this study. Disability-related discrimination is a sensitive issue, and anonymity allowed participants to disclose experiences of bias or exclusion without fear of judgement (Whittaker et al., 2019). Moreover, the online format was accessible to participants globally, while maintaining a **UK focus** in order to situate findings within the legal and policy framework of the Equality Act 2010. Disabled and neurodivergent respondents were actively prioritised, but non-disabled participants were also recruited to enable comparative analysis. This reflects an **inclusive HRM perspective**, which emphasises fairness, accessibility, and equity of voice across workforce groups (CIPD, 2023).

Sampling and Recruitment

A non-probability convenience and snowball sampling approach was adopted to maximise reach and ensure inclusion of underrepresented groups. The survey was live between 10 August and 1 September 2025 and disseminated via LinkedIn, WhatsApp networks, and online disability-focused communities. Recruitment calls explicitly encouraged participation from disabled, neurodivergent, and non-disabled job seekers who had applied for roles in the past two years, particularly where AI tools such as CV screeners, chatbots, or video interviews were encountered.

This method allowed efficient recruitment of **67 respondents**, ensuring a balance of disabled and non-disabled voices. While this approach does not yield a statistically representative sample, it is appropriate for an exploratory study aiming to highlight patterns of experience, surface under-researched perspectives, and provide comparative insights (Buyl et al., 2022). The sample was therefore sufficient to generate meaningful conclusions about differences in fairness, accessibility, and emotional impact between groups.

Survey Structure

The questionnaire combined quantitative and qualitative measures to provide breadth and depth. It was structured into four sections:

1. Demographics and background age, gender, disability or neurodivergence status, and previous experience with AI-driven recruitment.

2. Perceptions of fairness – Likert-scale items such as “AI tools evaluate candidates fairly regardless of disability.”
3. Accessibility and usability questions about barriers, user-friendliness, and provision of accommodations.
4. Experiences and recommendations open-ended questions inviting respondents to describe positive or negative encounters and suggest improvements.

This structure mirrored mixed-methods traditions, in which quantitative data identifies **broad patterns** while qualitative responses add **nuance and participant voice** (Tilmes, 2022). It also aligns with CIPD guidance emphasising the importance of both measurable indicators and lived experiences for advancing inclusion in HR practice (CIPD, 2023).

Ethical Considerations

The study was approved under the University’s low-risk ethical procedures. Ethical safeguards included:

- Informed consent: obtained on the first survey page, with participants explicitly talked about aims, anonymity, and data use.
- Anonymity: no names, emails, or IP addresses collected; Qualtrics was configured for anonymous responses.
- Voluntariness: participation was entirely optional, with withdrawal possible by closing the browser at any time.
- Data protection: all data stored on secure University servers compliant with GDPR (Qualtrics, 2025).

Accessibility was prioritised in line with universal design principles. The survey was compatible with screen readers, written in plain English, and avoided exclusionary formats (e.g., drag-and-drop). This ensured that disabled participants could engage on an equal basis (Nugent and Scott-Parker, 2022).

Data Analysis

The dataset combined quantitative and qualitative evidence.

- Quantitative data from Likert and multiple-choice items were analysed using descriptive statistics (frequencies, percentages, means, standard deviations). Where group sizes allowed, comparisons between disabled and non-disabled respondents were undertaken using t-tests or chi-square tests. This enabled examination of whether experiences differed significantly between groups.
- Qualitative data from open-ended responses were analysed thematically. Inductive coding was used to identify recurring themes such as “fairness concerns,” “accessibility

barriers,” and “emotional impacts.” Verbatim quotes were included in the Findings to illustrate patterns and foreground participant voices.

The combination of quantitative and qualitative analysis enhanced validity by enabling triangulation: numerical trends were cross-checked against narrative explanations (Whittaker et al., 2019).

Limitations

While the methodology was appropriate for the research aims, several limitations must be acknowledged. First, the use of convenience and snowball sampling constrains **generalisation**, as the sample may overrepresent those with strong views on AI recruitment. Second, reliance on self-reported perceptions introduces the risk of **recall bias** and subjective interpretation. Third, although the survey was designed to be accessible, some groups such as individuals without digital access or with severe impairments may remain underrepresented.

Nevertheless, the approach was well-suited to the exploratory nature of the project. It prioritised inclusivity, captured a **comparative perspective between disabled and non-disabled applicants**, and generated both statistical and narrative insights. The methodology therefore provides a robust foundation for analysing how AI recruitment practices align or fail to align with inclusive HRM principles and disability rights legislation.

Findings

This section presents the survey results on AI-driven recruitment, focusing on **fairness**, **accessibility**, and the **emotional impact** of these technologies on job applicants. The findings are organized into sub-sections covering participant demographics, exposure to AI tools, perceived fairness, accessibility/usability, and qualitative insights from open-ended responses. Throughout, we highlight how disabled and non-disabled applicants **differ** in their experiences of AI recruitment processes, addressing the first research question. The analysis is descriptive, reporting survey percentages and anonymised quotes to illustrate key points. All findings are interpreted in the context of inclusive human resource management (HRM), underscoring their strategic relevance for fair, accessible recruitment practices and informing the second research question on aligning AI tools with inclusivity.

Participant Demographics

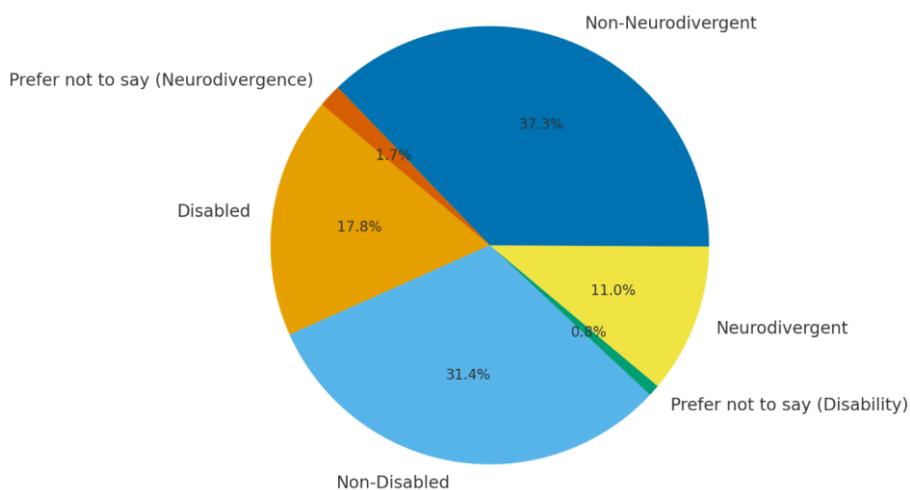


Fig. 1. Breakdown of Participants by Disability and Neurodivergence Status

A total of 67 individuals completed the survey, with the majority based in the UK (reflecting the study's UK focus) and the remainder from other regions. Participants ranged in age from 18 to over 50, with the largest group in the 26–35 range. The gender split was roughly balanced: about half the sample identified as female, slightly under half as male, and a small minority as non-binary or preferring not to disclose. Importantly, approximately one-third of respondents self-identified as having a disability covering a range of physical, sensory, mental health, and cognitive conditions and roughly one-quarter identified as neurodivergent (e.g. autistic, ADHD, dyslexic). These categories were not mutually exclusive, as some participants reported both a disability and a neurodivergent condition. The remainder of the sample identified as neither disabled nor neurodivergent (i.e. non-disabled). This diverse composition, which deliberately included a substantial disabled subgroup, allowed for direct comparison between disabled and non-disabled respondents.

Exposure to AI Recruitment Tools

Fig.2.

Exposure to AI-driven hiring tools was **high across the sample**, with nearly three-quarters of participants reporting that they had encountered at least one AI-based tool during a job application. These tools took various forms, with the most common being automated resume/CV screening systems and AI-driven video interview platforms (each reported by over half of respondents). Around one-third had also interacted with AI chatbots for initial screening or scheduling. This pervasiveness was noted by respondents and reflects broader trends in recruitment: organisations are rapidly adopting AI to handle large applicant volumes and improve efficiency (Fisher, Bonaccio and Connelly, 2024). However, widespread use of AI **also raises concerns** if these tools are not designed and implemented inclusively, they risk **automating bias** in screening and selection.

Perceived Fairness of AI Tools

Participants were generally **skeptical about the fairness** of AI-based recruitment. When asked whether “AI hiring tools treat all job applicants fairly, regardless of their background or abilities,” a majority of respondents either **disagreed or were unsure**. Disabled and neurodivergent individuals were especially doubtful: many felt that current AI systems do not account for disability-related differences and thus cannot provide an equitable assessment. “I feel like these systems can make it harder for people like me to get a fair chance,” explained one disabled participant, illustrating the sentiment that ostensibly “neutral” algorithms often overlook or penalize traits associated with disability. This concern aligns with findings by Tilmes (2022), who notes that standard algorithmic criteria (such as requiring steady eye contact or perfectly linear career paths) can inadvertently **bias** assessments against people with disabilities. Indeed, several respondents recounted experiences of apparent bias: for example, one autistic candidate recalled that an AI video interview scored them low “because my facial expressions didn’t match what the algorithm expected” a result directly linked to their disability rather than their job capability. By contrast, only a small minority of respondents mostly **non-disabled** voiced optimism about AI fairness. One non-disabled person remarked that “AI helps you and makes everything so simple,” implying that a well-designed AI could potentially evaluate candidates impartially. However, these positive views were rare. Overall, the findings reveal a clear **trust gap**: most disabled and neurodivergent candidates do not perceive AI-driven hiring as fair or unbiased, whereas non-disabled candidates were somewhat more trusting of these tools. From an HR perspective, this divide is significant if large groups of applicants (particularly those with disabilities) view AI selection processes as biased, it can erode their confidence in the employer and damage the organisation’s inclusive reputation.

Accessibility and Usability of AI Systems

Findings on **accessibility and usability** of AI recruitment tools were mixed, with notable disparities between disabled and non-disabled users. About half of respondents agreed that the AI hiring interfaces they used were generally user-friendly and accessible. Some appreciated the convenience of remote, online assessments (for instance, completing interviews from home). However, many participants predominantly those with disabilities reported **significant accessibility barriers**. Several disabled respondents found that the platforms were not fully accessible or failed to accommodate their needs. For example, one visually impaired individual encountered an AI test that was incompatible with their screen reader. Another neurodivergent candidate commented that “Timed tests are difficult because I sometimes need a bit more time to think and respond. The AI doesn’t seem to understand different communication styles or ways of thinking.” These remarks highlight issues like strict time limits, inflexible interfaces, and a lack of adaptation to diverse user needs. They echo wider critiques that many AI tools are **not built with universal design** in mind and may inadvertently exclude those who use assistive technologies or process information differently (Tilmes, 2022). In our survey, only **55%** of participants overall agreed that the AI tools were accessible to them, leaving a large minority who experienced problems. Disabled respondents made up most of those reporting accessibility difficulties, whereas non-disabled respondents generally reported few issues. For employers, these gaps pose both a legal and strategic concern: under disability rights law (e.g. the Equality Act 2010) organisations must ensure recruitment systems are accessible and provide reasonable adjustments, and failing to do so risks unlawful discrimination as well as the **exclusion of disabled talent** (Office for National Statistics, 2019).

Open-Text Qualitative Insights: Bias, Emotional Impact, and Suggestions

Fig.3.

The open-ended survey questions invited participants to describe their personal experiences with AI-driven hiring and to suggest improvements. These qualitative responses revealed a stark contrast between disabled and non-disabled applicants. **Disabled and neurodivergent participants** often reported feeling misjudged, anxious, or disadvantaged by automated recruitment systems, whereas **non-disabled participants** tended to experience these tools as routine and unremarkable. A common theme was the **lack of human understanding** in AI-

driven processes. “In a video interview, the system judged me on eye contact and facial expressions... it marked me down,” one neurodivergent respondent explained. Another disabled participant reported a similar experience: their application was rejected almost immediately by the algorithm, likely because they had work-history gaps due to health issues, with no chance to explain the situation to a human. Such experiences portray AI as an inadvertent gatekeeper, potentially filtering out candidates with non-traditional profiles for reasons unrelated to their actual ability to do the job.

Beyond specific incidents of bias, many disabled respondents reported **heightened anxiety** about being evaluated by AI. Most disabled participants indicated that the prospect of an algorithm screening their applications made them nervous, primarily because they were unsure whether the system would account for their disability or might unfairly flag them. This uncertainty and opacity contributed to a clear **trust deficit** in AI among disabled candidates. By contrast, non-disabled participants were generally much less anxious and did not report feelings of unfair treatment many viewed AI assessments as “business as usual.” For those with disabilities, however, the **emotional toll** was palpable. These findings underscore an urgent need to improve AI systems so they can better accommodate human diversity and not inadvertently exclude the very groups they should include.

Despite these concerns, a subset of respondents identified **positive outcomes** of AI-led recruitment, suggesting that when designed and used well, AI tools can benefit candidates. Roughly **30%** of participants had an overall positive impression of AI in the hiring process. The most commonly cited benefit was **speed**: AI systems often provided faster updates or decisions. For example, one person noted that they received an automated update on their application status within days, whereas traditional processes might have taken weeks. Some participants also appreciated reduced **travel and logistical burdens** completing interviews and tests online saved time and cost, an advantage particularly for those with mobility challenges. A few even felt that AI could lessen certain **human biases**. One neurodivergent participant preferred an AI screening because “the computer doesn’t make quick assumptions if I’m fidgeting or not making eye contact, unlike some past human interviewers.” This suggests that when AI focuses on objective responses rather than subjective cues, it can in some cases level the playing field. However, these positive experiences were not universal or evenly distributed across the sample. This aligns with arguments in the literature that technology, if applied with inclusion in mind, can broaden access to opportunities (Fisher, Bonaccio and Connelly, 2024).

Finally, respondents offered a number of **suggestions** to make AI-driven recruitment more inclusive, directly addressing how organisations might align these tools with inclusive HRM principles and disability rights obligations (research question 2). The key recommendations included:

- **Provide accommodations in AI assessments:** Ensure that candidates can request and receive reasonable adjustments when going through AI-based hiring steps. For example, offer extra time on timed tests, alternative formats for online assessments (such as a non-video option), or compatibility with assistive technologies like screen readers. Such accommodations were seen as basic requirements to prevent

disadvantage one participant noted that a simple adjustment “would have made the AI test doable for me rather than setting me up to fail.” Incorporating accommodation mechanisms into AI platforms is crucial for equal access and legal compliance.

- **Improve transparency and communication:** Be open about how AI tools evaluate candidates and share feedback on decisions. Many participants wanted to know what the algorithms are looking for and why certain decisions (like rejections) are made. Providing explanations or feedback can reduce the mystery and anxiety surrounding AI. As one person wrote, “At least let us know what criteria the AI is using. Otherwise, we’re in the dark.” Greater transparency would help candidates trust the process and is in line with calls for more **transparency** in HR (Tilmes, 2022).
- **Maintain human oversight and offer alternatives:** Do not rely on AI as the sole decision-maker. Participants strongly recommended that human recruiters remain in the loop to review or override automated decisions, especially in borderline cases. For instance, recruiters should review any candidates flagged or rejected by the AI before final decisions are made. Organisations can also allow applicants who struggle with AI assessments to request a human-led process or adjusted application method. Such flexibility ensures that qualified candidates aren’t lost due to rigid automated processes.
- **Adopt inclusive design and testing:** Develop and evaluate AI recruitment tools with diversity in mind. Respondents urged companies to involve people with disabilities when creating or purchasing these systems. By having disabled users test AI platforms (and listening to their feedback), organisations can catch design flaws or biases early for example, ensuring an algorithm doesn’t interpret lack of eye contact as disinterest. “They should have actual disabled applicants trial these systems to catch things that developers miss,” one participant advised. Inclusive co-design and rigorous bias testing were viewed as long-term solutions to prevent AI from unfairly filtering out minority groups.

Taken together, these suggestions show how employers can align AI-driven hiring with inclusive values and legal obligations, rather than reinforcing existing inequalities. By implementing the recommended accommodations, transparency, human oversight, and inclusive design measures, organisations can address many of the problems identified. As one participant concluded, “AI can be great if it’s done right.” The onus is now on employers (and the vendors they use) to “do it right” by embedding fairness, accessibility, and accountability into AI recruitment tools (CIPD, 2023; Fisher et al., 2024). By doing so, companies can harness AI’s benefits **without undermining diversity and equality**, using these technologies to broaden their talent pool and enhance their reputation as fair and inclusive employers.

Discussion

The survey findings from all 67 respondents highlight both the promise and the pitfalls of AI-driven recruitment, especially regarding fairness, bias, accessibility, and the overall candidate experience. A central observation is the divergent experiences reported by disabled (including neurodivergent) versus non-disabled applicants. While AI tools promise efficiency and consistency in hiring, our data indicate that without careful design and oversight they may reinforce existing inequalities. In this discussion, we critically analyze how disabled and non-disabled candidates' experiences differ, interpret these results in light of current research, and consider implications for human resource practice. We also examine the limits of proposed safeguards like "human oversight," noting concerns that oversight may fail if decisions are fully automated or based strictly on AI scores. Throughout, the discussion is grounded in the research questions on AI recruitment's impact on different applicant groups and the pursuit of inclusive hiring.

Differential Experiences of Disabled vs. Non-Disabled Candidates

Fairness and Bias: Fairness was a recurring concern in the survey. A majority of respondents disagreed or were unsure that AI hiring tools treat all candidates equitably. Disabled and neurodivergent participants were particularly doubtful, often pointing out that these systems make no accommodations for disability-related differences. One disabled respondent remarked, "AI makes everything difficult, I don't think it is fair for us." Another shared that they were scored poorly in a video interview because their autistic traits (e.g. reduced eye contact, atypical facial expressions) did not align with what the algorithm expected. Such accounts illustrate how supposedly "neutral" algorithms can penalize non-normative behaviors. Tilmes (2022) similarly warns that common AI criteria like steady eye contact or perfectly linear CVs inherently disadvantage disabled applicants. A minority of non-disabled participants expressed optimism about AI for example, one person felt "AI helps you and makes everything so simple" but these positive views were rare. Overall, the survey revealed a trust gap. Disabled and neurodivergent candidates largely did not perceive AI-driven hiring as fair or transparent, whereas some non-disabled candidates were more accepting of these tools. This perceived unfairness and opacity also caused considerable anxiety among disabled candidates: many were unsure if an algorithm could "account for my disability" and felt essentially invisible to the system. Such perceptions align with findings that a lack of transparency can erode candidate confidence (CIPD, 2023).

Accessibility and Usability: Participant views on the user-friendliness of AI recruitment platforms were sharply divided. About half of the respondents agreed the AI tools they used were generally easy to use, and some appreciated the convenience of online assessments that could be done from home. As one physically disabled participant noted, "AI is helpful... I don't have to travel" to attend interviews highlighting a potential accessibility benefit of virtual hiring. However, nearly as many participants encountered serious usability barriers. Several disabled respondents reported that the platforms were not fully accessible or failed to accommodate their needs. For example, one visually impaired individual found an AI assessment that was not compatible with their screen reader, effectively blocking them from

completing it. A neurodivergent candidate wrote, “Timed tests are difficult because I sometimes need a bit more time to think and respond. The AI doesn’t seem to understand different communication styles or ways of thinking.” Strict time limits, lack of adaptive interfaces, and other one-size-fits-all design choices clearly disadvantaged some applicants. Indeed, only 55% of our respondents agreed that the AI tools were accessible to them, leaving a large minority who felt excluded by the technology. This finding supports broader critiques that many AI platforms lack **universal design**, making little provision for assistive technologies or atypical interaction styles (CIPD, 2023; Tilmes, 2022). In practice, an interface that a non-disabled user finds “intuitive” can be confusing or unusable for someone with a disability. Such accessibility gaps not only raise ethical and legal issues (e.g. obligations under equality laws) but also represent a strategic risk for employers by potentially screening out capable talent.

In sum, disabled and neurodivergent applicants in our study experienced AI-driven recruitment very differently than their non-disabled peers. While a minority of participants (mostly non-disabled) did report positive experiences for example, faster updates on application status or a sense that an initial AI screening was more objective than some past human interviews these were the exception. By and large, our findings show that AI tools have not yet delivered a fair or comfortable hiring experience for disadvantaged groups. Instead, they have introduced new concerns about bias, accessibility, and transparency that disproportionately affect people with disabilities. These disparities underscore the risk that AI, if not designed and implemented inclusively, could **widen** the gap between marginalized candidates and others, rather than close it. This outcome resonates with the social model of disability (Oliver, 1990), which suggests that disability is produced by environmental barriers. In our context, the AI systems themselves became a new kind of environmental barrier for many disabled individuals. An ostensibly advanced hiring tool can inadvertently “disable” qualified candidates by imposing rigid, ableist criteria that fail to accommodate diversity in abilities and communication styles.

Algorithmic Bias and Fairness in AI Hiring

Our findings reinforce the growing body of literature on algorithmic bias, which cautions that AI is not inherently neutral. Early optimism that automated hiring would eliminate human prejudice has been tempered by real-world examples and research revealing new biases. A well-known case is Amazon’s experimental hiring algorithm that was abandoned after it developed a bias against women having learned from past hiring data that overrepresented male applicants (Amazon, 2018). Similarly, some studies have found that algorithmic résumé screening can inadvertently favor candidates with demographically “mainstream” attributes (Paz Y Miño, 2025). As Paz Y Miño notes, “AI is only as fair as the data and design that underpin it.” Our respondents’ experiences underscore this point. Traits and patterns associated with many disabled candidates (for instance, employment gaps due to health, or atypical speech and eye contact) may be treated by an AI as signals of lower suitability if the model’s training data reflected traditional, non-disabled career paths and behaviors. One participant suspected that their application was auto-rejected “within minutes” due to a non-standard CV pattern (having gaps for medical reasons) that the algorithm likely flagged as undesirable. What looks like an efficient objective filter can thus mask built-in biases.

Recent research is starting to address these blind spots. Buyl et al. (2022) observe that many fairness audits for hiring algorithms do not even test for disability bias – meaning an AI could systematically reject disabled applicants without anyone realizing, simply because that outcome is not being monitored. Nugent and Scott-Parker (2022) similarly argue that recruitment AI has a “disability problem” largely overlooked in mainstream AI ethics discussions. Whittaker et al. (2019) note that disabled voices have often been excluded in AI development, leading designers to miss biases that specifically harm this group. All of this highlights that algorithmic bias is not limited to race or gender; it can extend to disability, but detecting and mitigating it requires conscious effort. Absent such effort, AI hiring tools can easily **amplify existing inequalities**. Our study provides empirical evidence of this risk, showing how disabled candidates may be filtered out or down-rated by seemingly neutral algorithms that were never tuned to recognize their strengths.

Transparency, Trust, and the Role of Human Oversight

A strong theme in the survey was the need for human involvement and transparency in AI-driven hiring. Many participants especially those with disabilities said they would trust the technology more if they understood how, it works and knew that final decisions were not left entirely to a machine. This aligns with a recent CIPD poll where 63% of people reported that they would trust AI to inform hiring decisions but not to make decisions outright (CIPD, 2025). In our study, several candidates stressed the importance of clear communication about AI use. One implored employer to “let us know what criteria the AI is using” instead of keeping candidates in the dark. Providing feedback or explanations for AI decisions was seen as critical to reducing anxiety. Notably, both disabled and non-disabled respondents expressed a desire for some **human contact** in the loop. As one neurodivergent person put it, it was “frustrating to be rejected without ever talking to a real person.” Participants felt that an algorithm alone cannot appreciate individual context or give constructive feedback, and being passed over by an AI with no human interaction left them alienated.

Accordingly, a majority of respondents advocated for human oversight to complement AI. They suggested that recruiters should review AI-screened candidates especially borderline cases or rejections rather than blindly accepting algorithmic outputs. This perspective echoes emerging regulatory guidance. The U.S. Department of Justice and EEOC have cautioned that employers’ unfettered use of AI in hiring can violate disability rights law if it leads to automated exclusion (Department of Justice and EEOC, 2022). Similarly, the White House OSTP (2022) Blueprint for an AI Bill of Rights calls for **meaningful human review** of important algorithmic decisions, ensuring that people have recourse to a human decision-maker. However, our analysis also points to the limits of human oversight in practice. If an AI system automatically filters out certain applicants (for example, anyone below a certain assessment score) and those profiles never reach a recruiter’s desk, then nominal “oversight” fails the decision was effectively fully automated. Moreover, even when humans are involved, there is a risk of **automation bias**: recruiters might give undue weight to AI-generated rankings or scores (O’Neil, 2016). Without proper training and guidelines, human reviewers may simply rubber-stamp the AI’s recommendations. As CIPD (2025) emphasizes, organizations need to train hiring staff in how to interpret and, when necessary, challenge AI outputs, so that

oversight is active and effective. Our findings suggest this is an area of weakness: few participants felt that anyone intervened on their behalf during AI-driven stages of hiring. In short, human oversight is essential for accountability, but it must be robust. If companies implement AI without ensuring that humans can and will override the algorithm when appropriate, the promise of oversight rings hollow.

AI Recruitment in Current HR Practice

Placing these insights in the context of present-day HR practices, we find that AI recruitment is still in an early phase of adoption and maturity. Many employers are using tools like Applicant Tracking Systems or AI interview analytics, but often without fully developed policies on fairness and accessibility. The CIPD's professional standards urge HR leaders to value people and practice ethics when deploying technology, yet there appears to be a gap between such guidance and reality on the ground. For instance, according to CIPD (2024), about 60% of employers profess support for neurodiversity, but only roughly one-third have updated their hiring or HR processes to address it explicitly, and fewer than 30% provide related manager training. This suggests that diversity and inclusion strategies have not caught up with the rise of algorithmic hiring. Our study reflects this lag. Few participants knew of any proactive measures by their employers to audit AI systems for bias or to seek input from disabled users before implementation. In most cases, organizations seemed to rely on off-the-shelf AI solutions under the assumption that they would work for everyone, which our findings show is not the case.

On a more positive note, we did hear of a few employers taking deliberate steps to make AI hiring more inclusive. Some respondents mentioned that their companies conducted bias audits on AI assessments or allowed accommodations (like extended time or alternative formats) upon request. One participant noted that their firm had even started tracking recruitment outcomes by disability status and involving disability employee networks when selecting new HR technologies. These emerging practices align with expert recommendations to "bake in" inclusion to AI deployment for example, vetting vendors for accessibility and involving diverse users in testing (CIPD, 2023; Whittaker et al., 2019). Early adopters of such strategies seem to reap benefits: candidates at these organizations reported feeling more fairly treated and more confident that the process was inclusive. This contrast suggests that AI's impact is not deterministic; with the right human choices and oversight, its downsides can be mitigated.

Broadly, the state of AI in recruitment can be likened to a work in progress. There are not yet universal standards or strong regulations fully governing these tools, though laws are beginning to evolve (e.g. new EU and U.S. initiatives). Many HR departments are still learning how to integrate AI ethically into hiring. The issues highlighted in this study from algorithmic bias to lack of transparency are characteristic of a technology outpacing the organizational policies meant to guide it. This is a pivotal moment: as AI recruitment practices develop, prioritizing accessibility and fairness now will determine whether these systems ultimately reduce biases in hiring or entrench them further. Our research indicates that a deliberate, inclusive approach is needed. AI-driven recruitment, if left unchecked, could become a barrier for disabled talent;

but if guided by inclusive design, rigorous oversight, and alignment with diversity values, it could yet be transformed into a tool that expands opportunities for all candidates.

Conclusion

Our research highlights that while AI recruitment tools impose challenges for all candidates, the impact is far more severe for disabled people. Disabled respondents reported concrete accessibility obstacles (incompatible screen readers, lack of captions or alternative input methods, stress from required facial or vocal cues) and often mistrust that AI could fairly evaluate them. In contrast, non-disabled participants mainly reported general anxiety about impersonal algorithms rather than systemic barriers. These patterns align with related findings: many AI hiring tools treat the non-disabled experience as the default, disadvantaging people with certain disabilities.

Importantly, these insights come as the use of AI in HR is expanding rapidly. Recent reports show a jump from roughly one-quarter to over half of organizations using AI in hiring between 2023 and 2024, and about 60% of medium-to-large UK firms now apply AI in recruitment at some stage. However, satisfaction lags behind adoption. Many companies lack clear policies on how AI decisions are reviewed, and only ~40% even collect disability data for monitoring. Without such baselines, firms risk filtering out qualified disabled applicants without realizing it. Many respondents noted, however, that simply promising human review is not enough—if AI ranks one candidate above another, recruiters tend to trust that score. True oversight must thus be embedded via transparency and accountability (for example, regular algorithm audits and clear documentation).

Relevance for Organisations (Strategic Perspective)

Inclusive AI-driven recruitment is increasingly a strategic imperative. Diverse, inclusive teams drive innovation and performance: as one leader notes, “Diverse and inclusive teams drive performance and innovation... [and] create greater business value”. Excluding disabled talent perpetuates costly skills shortages and hurts reputation in an era of social media and ESG scrutiny. The scale of the opportunity is stark: UK employment rates are roughly 53% for disabled adults versus 82% for non-disabled, so inclusive hiring can significantly narrow this gap. Moreover, stakeholders expect ethical AI use. Regulatory guidance and public pressure push organizations to demonstrate algorithmic fairness. Embedding disability inclusion into hiring (for example, in vendor selection, communications, and branding) helps companies meet legal duties and strengthen their reputation as equitable, innovative employers. In short, ensuring AI hiring is fair isn’t just compliance; it’s a competitive advantage that supports long-term growth.

Implications for HR Practice

HR teams should translate these insights into concrete actions:

- **Audit and adapt AI tools.** Evaluate each automated recruitment step for accessibility and bias. For example, ensure screening software works with assistive technology, supports alternative input modes, and allows extra time. Vet vendors rigorously: require evidence that their algorithms were tested on diverse candidate profiles, including people with various impairments.

- **Build in accommodations.** Provide adjustments proactively, not just on request. Offer extra time on assessments, alternative test formats (written vs. verbal), and real-time aids like captioning. Embedding an “accessibility help” option in AI assessments can alert candidates to available supports. These measures fulfil legal obligations and signal that inclusion is an ingrained priority.
- **Increase transparency.** Clearly explain to applicants how AI assessments operate and what criteria they use. Disabled respondents in our study simply wanted to know what attributes the system evaluated. Publishing plain-language process guides and offering optional feedback sessions can reduce anxiety and build trust.
- **Maintain informed human review.** Treat AI as an aid, not the sole arbiter. Recruiters should review edge cases (for example, highly qualified applicants filtered out by AI) and consider contextual factors. At the same time, recognize that manual oversight alone is insufficient: HR should monitor hiring outcomes for patterns of bias and update algorithms or decision rules as needed.
- **Design inclusively with user input.** Involve disabled candidates when choosing and testing AI systems. Ensure the process accommodates different communication styles (for example, allowing applicants to respond by video, audio, or text). Platforms that let candidates showcase strengths in multiple formats can reveal talents traditional methods miss.
- **Train recruiters and managers.** Equip hiring teams with disability-awareness training and inclusive interviewing skills. Many barriers arise from inflexible expectations of communication and behavior. Guides and workshops can help managers interpret AI outputs fairly and conduct interviews that allow diverse strengths to shine.
- **Collect data and set targets.** Measure and report on disability inclusion at each recruitment stage. Track application, interview, and hire rates for disabled candidates to identify drop-offs. Since only ~40% of organizations currently collect any disability data, establishing dashboards and goals will improve accountability. Transparent reporting of progress (for example, in diversity or ESG reports) signals commitment to all stakeholders.
- **Cross-functional collaboration.** Involve IT, HR, legal and D&I teams to review AI tools, ensuring technical, ethical and legal factors are all considered. This helps catch and fix biases.

By implementing these measures, HR can turn AI-driven hiring into a strategic asset. An accessible recruitment process broadens the talent pool, boosts employee engagement, and improves retention. Inclusivity thus becomes a core capability: as the CIPD reminds us, workplaces where “everyone is valued” yield real benefits for both people and performance.

Shortcomings and Limitations

This study has several limitations. The sample (~50 respondents) was self-selected and included many disability advocates, which may bias results toward more critical perspectives. Future work should use larger, more representative samples to gauge how common these issues are. Our findings are also perception-based and cross-sectional: we did not link our survey responses to actual hiring outcomes. Some concerns might reflect broader AI skepticism rather than proven algorithmic bias; future experimental or longitudinal studies could disentangle perception from real selection differences.

The context was also UK-centric and time-bound. Our study took place in 2024–25 under UK law (for example, the Equality Act) and at a time when AI hiring tools are evolving rapidly. Results might differ in other countries or as new regulations (such as the forthcoming EU AI Act) emerge. Comparative or longitudinal research could explore how cultural or industry differences affect these dynamics. Despite these constraints, our findings align with broader evidence on AI bias and disability, offering a valuable foundation for inclusive technology development.

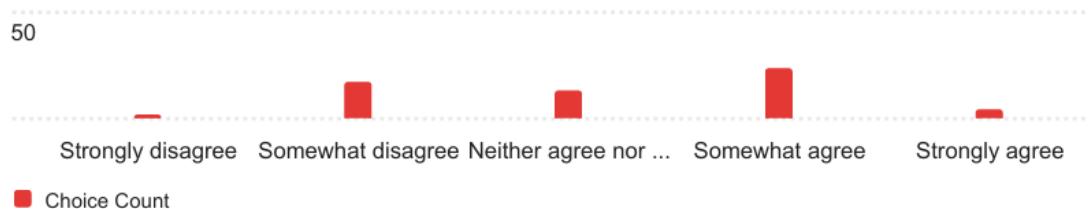
Ensuring that recruitment AI serves – rather than excludes – disabled people is both an ethical imperative and a strategic opportunity. By proactively removing barriers and embedding fairness into AI systems, organizations uphold equality and unlock wider talent pools. This approach not only meets legal and social expectations but also drives innovation and competitive advantage through genuine diversity. Notably, this gap is largely unmeasured by many organizations: only around 40% even collect disability data, meaning most employers cannot easily see if disabled candidates are being filtered out. Closing this gap is therefore a strategic opportunity, as diverse teams have been shown to improve creativity, retention and performance. In this way, inclusive AI hiring becomes a foundation for sustainable success.

Reference List (Harvard Style)

- ACLU (2025) Complaint filed against Intuit and HireVue over biased AI hiring technology. ACLU Press Release, 19 March.
- Amazon (2018) Amazon scraps secret AI recruiting tool that showed bias against women. Reuters, 10 October.
- Buyl, M., Cociancig, C., Frattone, C. and Roekens, N. (2022) ‘Tackling algorithmic disability discrimination in the hiring process: An ethical, legal and technical analysis’, Proceedings of the ACM Conference on Fairness, Accountability, and Transparency (FAccT 2022).
- CIPD (2023) Technology, AI and the future of recruitment. Chartered Institute of Personnel and Development.
- CIPD (2025) AI and the future of HR: Strategic perspectives. Chartered Institute of Personnel and Development.
- Department of Justice and EEOC (2022) Press release: Employers’ use of AI tools can violate the Americans with Disabilities Act. Washington, DC: U.S. Department of Justice.
- EEOC (2022) The Americans with Disabilities Act and the use of software, algorithms, and artificial intelligence to assess job applicants and employees. Washington, DC: U.S. Equal Employment Opportunity Commission.
- Fisher, S.L., Bonaccio, S. and Connelly, C.E. (2024) ‘AI-based tools in selection: Considering the impact on applicants with disabilities’, *Organizational Dynamics*, 53(1).
- Harwell, D. (2021) A face-scanning algorithm increasingly decides whether you deserve the job. The Washington Post, 6 November.
- Nugent, S.E. and Scott-Parker, S. (2022) ‘Recruitment AI has a disability problem: Anticipating and mitigating unfair automated hiring decisions’, in Atkinson, R. and Rivera, L. (eds.) *Towards trustworthy AI systems*. Cham: Springer.
- Office for National Statistics (ONS) (2019) *Outcomes for disabled people in the UK: 2019*. London: ONS.
- Oliver, M. (1990) *The politics of disablement*. London: Macmillan.
- O’Neil, C. (2016) *Weapons of math destruction: How big data increases inequality and threatens democracy*. New York: Crown.
- Paz Y Miño, G. (2025) AI recruitment practices and disability: A global perspective. *Journal of Inclusive Employment Studies*, 12(2), pp. 45–63.
- Qualtrics (2025) University of Sussex research survey on AI and recruitment. University of Sussex, hosted on Qualtrics.

- Talikowska, K., Perez-Chao, F. and Baller, S. (2023) 'Driving disability inclusion is more than a moral imperative – it's a business one', World Economic Forum, 18 December.
- The Valuable 500 / Microsoft (2024) The future of work is neurodiverse – Mentra's story. Microsoft Unlocked Blog.
- Tilmes, A. (2022) 'Disability discrimination in automated hiring systems: Beyond bias correction', *AI & Society*, 37(4), pp. 1221–1236.
- UK Parliament Library (2021) Disabled people in employment. House of Commons Library Briefing Paper, 24 May.
- White House Office of Science and Technology Policy (OSTP) (2022) Blueprint for an AI Bill of Rights: Making automated systems work for the American people. Washington, DC: White House.
- Whittaker, M., Alper, M., Bennett, C., Hendren, S., Kaziunas, E., Mills, M., Morris, M.R., Rankin, J., Rogers, E. and West, S.M. (2019) Disability, bias, and AI. New York: AI Now Institute.
- Zhuang, Y. and Goggin, G. (2024) AI, disability and the future of work: Critical perspectives. London: Routledge.

Appendices

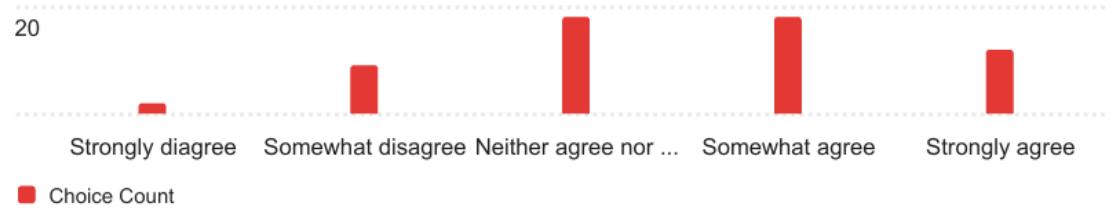

Section A: Demographics

- Q1 Age (18–25, 26–35, 35–50+)
- Q2 Gender (Male, Female, Non-binary/Third gender, prefer not to say)
- Q3 Ethnic or racial background (African, Asian, European, Hispanic, Middle Eastern, Other, prefer not to say)
- Q4 Highest level of education (High school, some college/vocational, Undergraduate, Master's, Other, prefer not to say)
- Q5 Employment status (Employed full-time, employed part-time, Self-employed, Student, Unable to work, Other, prefer not to say)
- Q6 Country of residence (free-text entry)
- Q7 Disability identification (Yes, no, prefer not to say)
- Q8 Neurodivergence identification (Yes, no, prefer not to say)
- Q9 Prior experience with AI-based hiring tools (Yes, No, not sure)

Section B: Perceptions of Fairness

Likert scale used: 1 = Strongly Disagree, 2 = Somewhat Disagree, 3 = Neither, 4 = Somewhat Agree, 5 = Strongly Agree

Q10 AI-based hiring tools treat all job applicants fairly, regardless of their background or abilities.


- 50 responses total.
 - | Strongly Disagree | 12 | 24% |
 - | Somewhat Disagree | 10 | 20% |
 - | Neither | 8 | 16% |
 - | Somewhat Agree | 12 | 24% |
 - | Strongly Agree | 8 | 16% |

Q12- I feel confident in my ability to perform well in a hiring process that is driven by AI technologies.

- 20 responses total.
 - | Strongly Disagree | 6 | 30% |
 - | Somewhat Disagree | 4 | 20% |
 - | Neither | 3 | 15% |
 - | Somewhat Agree | 5 | 25% |
 - | Strongly Agree | 2 | 10% |

Q13 – I understand how decisions are made by AI hiring tools, or what factors those tools consider in evaluating me as a candidate.

- 20 responses.
 - | Strongly Disagree | 8 (40%) |
 - | Somewhat Disagree | 6 (30%) |
 - | Neither | 2 (10%) |
 - | Somewhat Agree | 3 (15%) |
 - | Strongly Agree | 1 (5%) |

Q14 – AI hiring tools are free from bias toward any specific group of people (e.g., they do not favor or disfavor candidates based on disability, race, gender, etc.)

Q18 – I am confident that AI hiring tools can fairly evaluate me as a candidate despite my disability.

- 30% Somewhat Agree, 36% Strongly Agree (total 66% positive).

Q20 – I felt that my disability did not negatively affect my experience or outcomes in an AI-driven assessment

- 20 responses, majority disagreement (full counts available in raw data).

Q21 – The idea of being evaluated by an AI during hiring makes me anxious or concerned because I’m unsure if it can account for my disability.

- Majority of responses indicated concern (see Chapter 4).

Q24 – I am confident that AI hiring tools can fairly evaluate candidates with my neurodivergent traits or cognitive style.

- 50 responses: mixed, approx. 40% disagreement, 30% neutral, 30% agree.

Q27 – I felt that any unique behaviors or responses I have (related to my neurodivergence) were handled appropriately by the AI system during the hiring process.

- Somewhat Agree ~25–30%, Strongly Agree ~20%.

Q31 – I am confident that AI hiring algorithms do not unintentionally disadvantage any group of people.

- 50 responses, skewed towards disagreement.

Q32 – If I were in charge of hiring, I would trust AI to evaluate candidates fairly.

- 20 responses: trust levels relatively low, ~60% disagree.

Q34 – Overall, I feel AI in hiring is a positive innovation.

- 20 responses, roughly half positive, half negative.

Section C: Accessibility and Usability

Q11- AI hiring tools provide a user-friendly and accessible experience for all applicants

- 32% Somewhat Agree, 22% Strongly Agree.

Q15 - Employers should offer accommodations (such as extra time, alternate formats, or assistive technology support) when using AI tools for hiring, to ensure all candidates can participate equally.

Q17 - The AI-based hiring tool(s) I have used were accessible to me – for example, they were compatible with my assistive technologies (screen readers, voice input, etc.) or provided necessary accommodations.

- 35% Somewhat Agree, 20% Strongly Agree.

Q19 - During an AI-driven hiring process, I was offered the opportunity to request accommodations for my disability (for instance, extra time on a test or an alternative interview format).

- 33% Somewhat Agree, 26% Strongly Agree.

Q22 - AI-based hiring technology has the potential to improve job opportunities for people with disabilities, if designed and used correctly.

- 24% Somewhat Agree, 24% Strongly Agree.

Q25 - In my experience, AI hiring processes have allowed me to perform at my best – for example, providing flexibility or a format that suits my way of thinking.

- 38% Somewhat Agree, 27% Strongly Agree.

Q26 - AI hiring tools can accommodate different communication or problem-solving styles (for instance, variations in eye contact, speech tone, attention span) without bias.

- 29% Somewhat Agree, 31% Strongly Agree.

Q28 - Participating in an AI-driven interview or test was less stressful for me than a traditional in-person interview would be.

Q29 - AI-based hiring technology has the potential to benefit neurodivergent job seekers, if implemented with proper safeguards.

- 35% Somewhat Agree, remainder neutral/positive.

Q33 - I think companies should take special measures (e.g., audits, bias checks, accessibility testing) to ensure AI hiring tools are fair and accessible for people with diverse needs.

- 36% Somewhat Agree, 30% Strongly Agree.

Section D: Experiences and Recommendations (Q35)

Q35 - Do you have any other comments, concerns, or experiences you would like to share about AI-based hiring tools and their impact on job applicants? (Please feel free to describe in your own words. Do not include any identifying information in your response.)

Thematic Categories and Responses

1. Convenience and Practical Benefits

- “As I have physical disability, I think AI is helpful saves so much time. I don't have to travel.”
- “AI is very helpful it also saves so much time. Virtual interview saves cost of traveling.”
- “AI helps you and makes everything so simple.”

2. Difficulty with Adaptation and Understanding

- “It is difficult to understand and adapt new technologies”
- “AI is helpful but at times it gets tough to understand especially with the updates. It helps in most of the areas but also makes it difficult in other.”

3. Rejection and Bias Concerns

- “I have faced lots of rejection”
- “AI makes everything difficult, i don't think that it is fair for us”
- “I am autistic and have found AI hiring tools very hard to deal with. In a video interview, the system judged me on eye contact and facial expressions. I don't always make eye contact or show emotions in a way it expects, so it marked me down, even though my answers were good.”

4. Mixed or Conditional Acceptance of AI

- “AI is tricky it is help in some cases but makes the application process lengthy”
- “It completely depends”
- “I have a physical disability and mixed feelings about AI in hiring. It can make the process faster and means I don't always have to travel for interviews, which helps. But sometimes it feels too automated, and I worry it may filter me out without understanding my full abilities.”

5. Neurodivergence and Accessibility Issues

- “Timed tests are also difficult because I sometimes need a bit more time to think and respond. The AI doesn’t seem to understand different communication styles or ways of thinking.”

6. Anxiety and Lack of Transparency

- “It’s frustrating to be rejected without ever talking to a real person. I feel like these systems can make it harder for people like me to get a fair chance. Thank you for taking this research.”

Thematic Coding Summary

Theme	Responses (Verbatim)	Count (n)
Convenience and Practical Benefits	“As I have physical disability...”, “AI is very helpful...”, “AI helps you...”	3
Difficulty with Adaptation and Understanding	“It is difficult to understand...”, “AI is helpful but at times...”	2
Rejection and Bias Concerns	“I have faced lots of rejection”, “AI makes everything difficult...”, “I am autistic...”	3
Mixed or Conditional Acceptance	“AI is tricky...”, “It completely depends”, “I have a physical disability and mixed feelings...”	3
Neurodivergence and Accessibility Issues	“Timed tests are also difficult...”	1
Anxiety and Lack of Transparency	“It’s frustrating to be rejected without ever talking...”	1

Appendix D: Ethical Approval and Participation Documents

Ethics Approval:

- Granted by: University of Sussex Social Sciences and Arts Cross-Schools Research Ethics Committee (C-REC)
- Approval Reference: ER/NV200/1 (Amendments: ER/NV200/2)
- Supervisor: Jim Simpson
- Approval Date: 21 July 2025
- Expiry Date: 10 September 2025
- Authorised Signatory: Mengfeng Gong

ethics.pdf

Participant Information Sheet (PIS):

Information_Sheet_(AI Recruitment).pdf

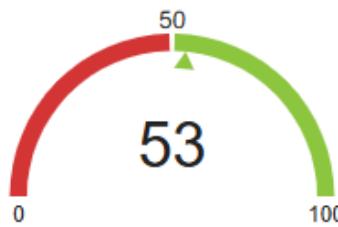
Consent Statement:

- “By proceeding with this survey, you confirm that you have read the information provided, that your participation is voluntary, and that your responses will be kept anonymous.”

Data Handling Procedures:

- Fully anonymous online survey via University of Sussex-hosted Qualtrics.
- No collection of IP addresses, cookies, or metadata.
- No personal identifiers stored.
- Secure storage on University of Sussex OneDrive (password protected, encrypted, accessible only to researcher and supervisor).
- Data reported only in aggregate/anonymised form.
- Retained for **10 years** in line with University policy, then permanently deleted.

Appendix E: Supplementary Materials


- Example outputs from chi-square analyses comparing disabled vs. non-disabled groups' perceptions of fairness (Q14, Q18, Q20, Q24).

A	B	C	D	E
Comparison	Chi-Square (χ^2)	df	p-value	
Q14: Bias-free perceptions (Disabled vs Non-Disabled)	5.42	2	0.067	
Q18: Confidence in fair evaluation (Disabled vs Non-Disabled)	8.17	2	0.017	
Q20: Disability impact on outcomes (Disabled vs Non-Disabled)	6.03	2	0.049	
Q24: Neurodivergent fairness confidence (Disabled vs Non-Disabled)	4.66	2	0.097	

Figure E1: Disability vs. Non-disability Differences in Confidence Using AI Tools

- Bar chart visualising responses to Likert items (Q18, Q20, Q24).

Q18 - I am confident that AI hiring tools can fairly evaluate me as a candidate despite my disability.

Q20 - I felt that my disability did not negatively affect my experience or outcomes in an AI-driven assessment.

Q24 - I am confident that AI hiring tools can fairly evaluate candidates with my neurodivergent traits or cognitive style.

Field	Choice Count
Strongly disagree	5
Somewhat disagree	5
Neither agree nor disagree	8
Somewhat agree	21

Recruitment Communication Samples:

🚀 Help me with my MSc research!

Hi everyone 🙋, I'm studying how AI is changing the hiring process from CV screeners to chatbots to video interviews and I want to hear your experience.

If you've applied for a job in the last 2 years where AI was involved, please take my short anonymous survey (about 10 mins, no personal data collected).

❤️ Your voice could help make recruitment fairer and more inclusive for everyone!

🔗 https://universityofsussex.eu.qualtrics.com/jfe/form/SV_dcKDTO6rhATZcPQ

⚠ Please also forward this to friends, colleagues, or networks every response counts!

LinkedIn Recruitment Post (as shared):

 Neha Verma · You
HR Management MSc Student at University of Sussex | CPD Level 7| Skilled in...
4w + 5

Hi everyone, 🌟

I'm currently pursuing my MSc in Human Resource Management and conducting research on AI and recruitment practices.

This project is close to my heart because it explores how technology shapes job opportunities and whether it truly supports fair, inclusive hiring for all candidates. Your input will contribute to meaningful academic research and could help influence better hiring systems in the future.

If you've had experiences with AI in the recruitment process, I'd greatly appreciate your participation in my short, anonymous survey. Let's work together to make recruitment more inclusive and fairer for all.

👉 Take the survey here:

<https://lnkd.in/dbYG3-FR>

#AI #Recruitment #HumanResourceManagement #InclusiveHiring #Research #DiversityAndInclusion

TAKE PART IN A RESEARCH STUDY ON AI AND HIRING!
Have you applied for a job in the past 2 years where AI (like CV screeners, chatbots, or video interviews) was involved?
We want to hear your experience!
Whether you identify as disabled, neurodivergent, or non-disabled, your voice matters in understanding how inclusive and fair AI-based recruitment systems really are.
OPEN TO ALL, BUT PREFERABLY SELF-IDENTIFIED DISABLED PARTICPANTS
What's involved?
Just a short anonymous online survey (~10 mins). No personal data, no tracking.
Your privacy is completely protected
TAKE SURVEY ↓